
MayaVi Users Guide

Prabhu Ramachandran

August 25, 2005

Copyright c© 2001-2005 Prabhu Ramachandran

Abstract
MayaVi is a scientific data visualizer. It is written in Python <http://www.python.org > and

uses the Visualization Toolkit (VTK) <http://www.vtk.org/ > for the visualization. An easy to use
GUI using Tkinter <http://www.pythonware.com/library/tkinter/introduction/index.
htm> is provided. MayaVi is free software and is distributed under the conditions of the BSD license
<http://www.opensource.org/licenses/bsd-license.html >. It is also cross platform and
should run on any platform where both Python and VTK are available (which is almost any *nix, Mac
OSX or Windows).

http://www.python.org
http://www.vtk.org/
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.opensource.org/licenses/bsd-license.html

Chapter 1

Introduction

MayaVi is a scientific data visualizer. It is written in Python <http://www.python.org > and uses
the Visualization Toolkit (VTK) <http://www.vtk.org/ > for the visualization. An easy to use
GUI using Tkinter <http://www.pythonware.com/library/tkinter/introduction/index.
htm> is provided. MayaVi is free software and is distributed under the conditions of the BSD license
<http://www.opensource.org/licenses/bsd-license.html >. It is also cross platform and
should run on any platform where both Python and VTK are available (which is almost any *nix, Mac
OSX or Windows).

In Sanskrit ”Mayavi” means magician. The name wasn’t exactly chosen for its meaning but was the
result of a long and hard search with the author pestering a lot of people for suggestions. My sincere
thanks to all of those who offered suggestions.

MayaVi has a quite a few useful features:

• An easy to use GUI.

• MayaVi can be used as a Python module from other Python programs. MayaVi can also be used
interactively from the Python interpreter.

• Provides modules to visualize grids, scalar and vector data fields. Rudimentary tensor support is
also available.

• It provides support for any VTK dataset using the VTK data format <http://www.vtk.org/
pdf/file-formats.pdf >. This includes rectilinear, structured and unstructured grid data and
also polygonal data. Both the original VTK data formats and the new XML formats are supported.

• Support for PLOT3D data. Both ASCII and binary files work. Only the structured grid format
works because of current limitations in the vtkPLOT3DReader. Simple support for multi-block
data is also incorporated.

• Support for EnSight data. EnSight6 and EnSightGold formats are supported. Only single parts are
supported at this time.

• Many datasets can be used simultaneously.

• Multiple visualization modules can be used simultaneously.

• Quite a few basic data filters are also provided.

• Supports volume visualization of data via texture and ray cast mappers.

• Support for importing a simple VRML scene or a 3D Studio file. Texturing is not yet supported
due to limitations in VTK’s vtkVRMLImporter.

• A pipeline browser with which one can browse and edit objects in the VTK pipeline. A segmented
pipeline browser is used to make it easier to look at parts of the VTK pipeline.

• A modular design so one can add ones own modules and filters.

• A Lookup Table editor to customize lookup tables easily while visualizing data!

3

http://www.python.org
http://www.vtk.org/
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.opensource.org/licenses/bsd-license.html
http://www.vtk.org/pdf/file-formats.pdf
http://www.vtk.org/pdf/file-formats.pdf

CHAPTER 1. INTRODUCTION

• The visualization (or a part of it) can be saved and reloaded in the future.

• Export the visualized scene to a Post Script file, PPM/BMP/TIFF/JPEG/PNG image, Open Inven-
tor, Geomview OOGL, VRML files or RenderMan RIB files. It is also possible to save the scene to
a vector graphic via GL2PS <http://www.geuz.org/gl2ps >. This is only available if VTK is
built with GL2PS support.

• Support for picking data points or cells and also configuring the lighting of the visualization.

And a lot more. MayaVi is free software and hence can be modified to do things differently. The rest of
this manual will provide information on how to use it.

4

http://www.geuz.org/gl2ps

Chapter 2

Getting started

MayaVi is a pretty powerful tool. This chapter describes the GUI that MayaVi provides and the way to
use it. This chapter gets you started using MayaVi.

2.1 Starting MayaVi

Under *nix if your installation is setup such that the script mayavi is on the system wide path just run
the executable mayavi anywhere. If not, change the current directory to the directory where MayaVi
was installed and run:

% mayavi &

If you have an already saved MayaVi visualization in some file, say saved viz.mv you can start
MayaVi using that file like so:

% mayavi saved_viz.mv &

Under Windows visit the directory where MayaVi was installed and double click on the executable
mayavi.pyw. If your installation went well this should start MayaVi.

If you have problems running MayaVi, consult the MayaVi home page and look at the Installation
sections. You can also ask for help at the mailing list or ask the author.

2.2 Command line arguments

2.2.1 Basic options

This section lists some simple useful command line options

mayavi --display DISPLAY Use DISPLAY for the X display. This option makes sense only when
running MayaVi under X.

mayavi -g WIDTHxHEIGHT+XOFF+YOFF Set the geometry of the main window when it is launched.
The arguments that can be passed follow the standard X convention and include the width, height,
x offset and y offset of the window. This option is also available through --geometry .

mayavi -h This prints all the available command line options and exits. Also available through --
help .

5

CHAPTER 2. GETTING STARTED 2.2. COMMAND LINE ARGUMENTS

mayavi -V This prints the MayaVi version on the command line and exits. Also available through --
version .

mayavi filename.mv This loads a previously saved MayaVi visualization.

2.2.2 Advanced options

This section lists some advanced command line options. This section is intended for those who already
understand how MayaVi works. If you are new to MayaVi it is recommended that you read the rest of
the guide and then get back here when you need more advanced command line options.

mayavi -d vtk file.vtk Opens a VTK file (even the new XML format is supported) passed as the
argument. Also available through --vtk .

mayavi -x plot3d xyz file This opens a PLOT3D co-ordinate file passed as the argument. Also
available through --plot3d-xyz .

mayavi -q plot3d q file This opens a PLOT3D solution file passed as the argument. Please note
that this option must always follow a -q or –plot3d-xyz option. Also available through --plot3d-
q.

mayavi -e ensight case file Opens an EnSight case file passed as the argument. Also available
through --ensight .

mayavi -m module-name The passed module name is loaded in the current ModuleManager. The
module name must be a valid one if not you will get an error message. Also available through --
module .

mayavi -f filter-name The passed filter name is loaded in the current ModuleManager. The filter
name must be a valid one if not you will get an error message. Also available through --filter .
If the filter is the UserDefined filter then it could be specified as UserDefined:vtkSomeFilter
where vtkSomeFilter is a valid VTK class. In this case the filter will not prompt you for the VTK
filter to use.

mayavi -z saved-visualization-file Loads a previously saved MayaVi visualization file passed
as the argument. Also available through --viz and --visualization .

mayavi -M module-manager-file Loads a module manager saved to a file. If a file that does not
exist is given this will simply create a new module manager that can be populated with filters and
modules. Also available through --module-mgr .

mayavi -w vrml2-file Imports a VRML2 scene given an appropriate file. Also available through
--vrml .

mayavi -3 3DStudio-file Imports a 3D Studio scene given an appropriate file. Also available
through --3ds .

mayavi -n Creates a new window. Any options passed after this will apply to this newly created
window. Also available through --new-window .

6

CHAPTER 2. GETTING STARTED 2.3. THE MAYAVI WINDOW

2.2.3 Examples

Here are a few interesting examples.

% mayavi examples/heart.mv

This command loads an existing visualization.

% mayavi -z examples/heart.mv -n -z examples/other.mv

This command loads the heart.mv saved visualization in one window, creates a new window and
loads the other.mv in the other.

% mayavi -d examples/heart.vtk -m Axes -m GridPlane \
> -M new -f Threshold -m IsoSurface \
> -n -d examples/heart.vtk -m Outline -m ContourGridPlane

This command loads a VTK data file called heart.vtk , loads the Axes , GridPlane modules in
one ModuleManager . Then creates a new ModuleManager and loads a Threshold filter and an
IsoSurface module in it. It then opens a new visualization window, loads the VTK data file, heart.
vtk , the modules Outline and ContourGridPlane in it.

The provided options make it possible to construct very useful visualizations from the command
line.

2.3 The MayaVi Window

MayaVi provides an easy to use GUI. The picture shown below shows the basic GUI that MayaVi pro-
vides. The regions marked out in red are to be noted. The top left shows a set of menus. Below the
menus is a control panel on the left and the actual visualization on the right. At the bottom of the ap-
plication window is a status bar that turns red when MayaVi is busy doing something. In between the
status bar and the visualization are provided a set of buttons that help control the visualization view.

7

CHAPTER 2. GETTING STARTED 2.3. THE MAYAVI WINDOW

Each section of the screen marked and described above provides important functionality.

Menu This provides a set of menus from which provide the user with bulk of the functionality.

Visualization This part of the screen is where the data is visualized using VTK.

Control Panel The control panel allows the user to configure and control the particular visualization. It
provides various lists for the user’s convenience. These are discussed in detail subsequently.

Status Bar This part of the screen indicates the status of MayaVi to the user. If MayaVi is busy doing
something this part of the screen will turn red and the cursor will change to a watch indicating that
MayaVi is busy.

View Modes These are a set of convenience buttons that help the user quickly see one particular view
of the visualization.

The next chapter deals with using MayaVi.

8

Chapter 3

Using MayaVi

This chapter describes in detail the way to use MayaVi for your data visualization.

3.1 The Basic Design of MayaVi

It is important to understand the basic design of MayaVi before you use it. MayaVi is a data visualizer
and the design reflects this. The basic design is simple and is described in this section.

3.1.1 The Control Panel

The control panel needs to be understood before one can do anything serious with MayaVi. This section
describes the control panel in some detail.

• Associated with each data file that is to be visualized is an object called a DataVizManager . This
object is responsible for the datafile and the entire visualization associated with that data file. Each
DataVizManager instance is shown in the first list in the control panel.

• Each DataVizManager controls a set of ModuleManager s. These ModuleManager s are listed
in the second list from the top.

• Each ModuleManager controls set of two legends (one for scalar visualization and one for vector
visualization), a collection of Filter s and a collection of Module s. Any number of Filters and
Modules can be used.

• A Filter is an object that filters out the data in some way or the other. A simple example is
the ExtractVectorNorm filter. This extracts the magnitude of the selected vector data field
attribute for the data file. All modules that use this as an input will receive the vector magnitude
as the scalar field data. The filters can be chosen from the Visualize menu. Each ModuleManager
can have as many filters as are required. When multiple filters are used, it is important to note
that each filter sends its data to the next filter in sequence. This could be problematic in some
situations. Lets say there is a structured grid object and that needs to be subsampled. We can use
the ExtractGrid filter and then display a GridPlane . Now we want to show contours but this
time we want to threshold the contours based on input scalars so we use the Threshold filter.
If we put the Threshold filter in the same ModuleManager, the grid will disappear since the
Threshold output is an unstructured grid. So to handle this we create a new ModuleManager
(click the New button) and add the Threshold filter in that ModuleManager . Put all the modules
that use this filter in that ModuleManager .

• A Module is an object that actually visualizes the data. There are a large number of Modules that
can be used and these are also available from the Visualize menu. Each ModuleManager can
have as many modules as are required.

Although the above sounds complex, it really is not. It may just take a little getting used to before you
are completely comfortable with it. The following figure illustrates the above and clarifies matters.

9

CHAPTER 3. USING MAYAVI 3.2. DATA FORMATS

If you have multiple DataVizManager s and want to see the ModuleManager s of one of them then
you either double click on the appropriate manager or single click on the manager and click on the Show
Pipeline for the DataVizManager s and on the Show for the ModuleManager s.

The other GUI buttons and features are all rather self explanatory. There are only a few points that
need to be made in order to make this description complete:

• The creation and deletion of a DataVizManager is controlled via the File menu. The open
menu items will create a new DataVizManager and the Close menu item will close the se-
lected DataVizManager and all its ModuleManager s. The Close All menu item will close all
the DataVizManager s.

• The addition and deletion of ModuleManager s, can be done using the New and Delete buttons
in the control panel.

• Filter s and Module s can be added from the Visualize menu and the corresponding Filters and
Modules the sub menus. They can be deleted from the control panel.

• Filter s and Module s can be configured by either double clicking on the corresponding item or
by selecting the item and clicking on the configure button.

3.2 Data formats

MayaVi is a data visualizer and one first needs to have data to visualize anything. MayaVi supports the
following data formats:

VTK data format <http://www.vtk.org/pdf/file-formats.pdf > MayaVi supports any VTK
dataset using the VTK data format <http://www.vtk.org/pdf/file-formats.pdf >. This
includes rectilinear, structured and unstructured grid data and also polygonal data. Please refer
the linked document for details on the VTK data format. The new VTK XML data format is also
supported by MayaVi.

10

http://www.vtk.org/pdf/file-formats.pdf
http://www.vtk.org/pdf/file-formats.pdf

CHAPTER 3. USING MAYAVI 3.3. OPENING A DATA FILE

PLOT3D data MayaVi supports PLOT3D file format with binary structured grid data. The other PLOT3D
datasets will not work due to limitations in VTK’s vtkPLOT3DReader. Simple support for multi-
block data is also incorporated.

EnSight data MayaVi supports EnSight data. EnSight6 and EnSightGold formats are supported. Only
single parts are supported at this time.

In addition to this MayaVi allows one to import VRML2 files and 3D Studio files. Texturing is not
yet supported due to limitations in VTK’s vtkVRMLImporter.

Those interested in converting data arrays under Python into VTK files should look at Pearu Peter-
son’s pyVTK <http://cens.ioc.ee/projects/pyvtk/ > Python module.

MayaVi ships with a simple example of a heart CT scan data in the VTK data format (this should be
in the examples/ directory). The dataset used is a structured points dataset with a scalar field. This
can be used as a simple reference. More VTK, PLOT3D and EnSight data samples should be available
from the VTK download page <http://www.vtk.org/get-software.php >.

3.3 Opening a data file

Once data suitable for MayaVi is available one can begin the visualization. If you don’t have data then
please note that MayaVi ships with a simple example of a heart CT scan data in the VTK data format (this
should be in the examples/ directory). The dataset used is a structured points dataset with a scalar
field. More VTK, PLOT3D and EnSight data samples should be available from the VTK download page
<http://www.vtk.org/get-software.php >.

The first thing to do is load an appropriate data file. Visit the File menu and choose the appropriate
menu item for the data you have and select the file you want from the resulting GUI. Once you do this,
you will notice that the control panel will show a DataVizManager at the topmost list and you will see
a lot of controls below this. The control panel is described in some detail in this section. If you aren’t
familiar with that section yet, this might be a good time to review it.

Once the data file is opened a dialog box will pop up that allows one to configure the datafile. One
can choose the appropriate data field one is interested in. This configuration window can be closed when
unnecessary. To reconfigure the data use the Configure Data button provided in the control panel. Only
one scalar attribute and one vector attribute is supported at a given time. Each DataVizManager that is
seen represents a different file. One can open as many data files as one wants. Different data types can
be loaded simultaneously too. Using a similar procedure one can import a simple VRML2 scene or even
a 3D studio file. To close a VRML or 3D Studio file choose the appropriate file in the Close menu.

MayaVi also supports time series data. If the file name ends with an integer, MayaVi treats this
integer as a time index. All files in the same directory as the loaded file are scanned. If any of them
share the same pattern (without the last integer) as the name of the opened file, then the files are treated
as part of the time series. These files are then sorted. The Configure Data GUI automatically addes a
slider to switch between these time steps and an auto-sweep button to sweep through the time series.

Once the data file is read and a DataVizManager is created an instance of a ModuleManager is also
created. At this point one has to load the Filter s and the Module s in order to do the visualization.

3.4 Visualizing the Data

Once the data file has been opened and the appropriate field attribute for both scalars and vectors has
been chosen one can either filter the data or one can directly apply a module to the data and visualize
it. MayaVi provides a large number of Modules and a few Filters. They are described in more detail
subsequently.

In order to Filter the data one must use the Visualize menu and from the Filters sub-menu choose the
appropriate filter. As soon as a filter is requested a popup window will appear that helps you configure
the particular filter. Please note that it is not at all necessary to filter the data. If no filtering is required
one does not need to load any filter. Even if a filter is used one can delete it at any time using the controls
provided in the control panel.

In order to use a particular visualization module a procedure similar to the one for Filters is used.
One merely uses the Visualize menu and from the Modules sub-menu chooses the appropriate Module.
The module might take a little while to load. If there is some kind of error a warning dialog will attempt
to describe the problem and hopefully the user can correct the situation.

11

http://cens.ioc.ee/projects/pyvtk/
http://www.vtk.org/get-software.php
http://www.vtk.org/get-software.php

CHAPTER 3. USING MAYAVI 3.5. PICKING DATA

3.4.1 Navigating the Visualization

It is important to be able to navigate the data and view it appropriately. In MayaVi this is achieved in one
of two ways. Using the standard view mode buttons provided at the bottom of the visualization widget
or by using the mouse to navigate through the visualization. The mouse based navigation is far more
powerful and general purpose. The buttons however provide quick shortcuts to commonly desired
views. The buttons and the visualization widget are shown in the illustration in an earlier chapter.

3.4.1.1 Navigating using the mouse

Mouse navigation is powerful but takes a little getting used to. It is relatively simple and with experience
can be used easily. This section briefly describes how one can use the mouse to navigate through the
data.

Rotating the visualization With 3D visualization it is important to be be able to rotate the visualized
scene. In MayaVi this is achieved by first placing the mouse pointer on top of the visualization
window. Then one keeps the left mouse button pressed and drags the mouse pointer in the direc-
tion one needs to rotate the scene. This is very much like rotating an actual object.

Zooming in and out To zoom in and out of the scene first one places the mouse pointer inside the
visualization window. To zoom into the scene one keeps the the right mouse button pressed and
drags the mouse upwards. To zoom out of the scene one keeps the right mouse button pressed
and drags the mouse downwards.

Panning the scene To pan a scene implies translating the center of the rendered scene. In MayaVi this
is done in two ways.

1. By keeping the left mouse button pressed and simultaneously holding down the Shift key
and dragging the mouse in the appropriate direction.

2. By keeping the middle mouse button pressed and dragging the mouse in the appropriate
direction.

Just practice this a few times and you should get used to this pretty easily. This practically covers all
that you need to know to be able to use MayaVi effectively. The best way to really learn about MayaVi
is to explore the various options and try them out. Subsequent sections provide more details on the
various menu’s provided and the various modules and filters that are available.

3.5 Picking data

MayaVi supports data picking. While visualizing some data press the p or P key to pick the data point
above the current mouse position. This will pop up a new window where the picked values will be
displayed. The window also has a few controls that let you configure the type of picking you wish to
perform. Please note that the picker will pick data on the actors that you have visualized on screen. It
will attempt to find the nearest actor and pick the data on that. The picked point will be highlighted
using an axes. The picker supports picking the following:

Picking the nearest point This option is the default and lets you pick the nearest point in the data. You
could use this if you have data specified as point data. Note that when you pick using this option
the picked location may not be exactly where you placed the mouse. The location will snap to the
nearest available point. By changing the tolerance presented in the GUI you can control how near
the point should be to the exact picked position.

Picking the nearest cell This option lets you pick the nearest cell in the data. You could use this if you
have data specified as cell data. By changing the tolerance you can control how closely the picker
finds the nearest cell.

Picking an arbitrary point This option lets you pick an arbitrary point in space that is not tied to the
nearest cell or point. The motion of this picker is much smoother than the point or cell picker.
However, the point that you pick will not be exactly at a point in the actual data. The results will
therefore be interpolated using a probe filter.

12

CHAPTER 3. USING MAYAVI 3.6. CONFIGURING THE LIGHTS

3.6 Configuring the lights

MayaVi allows you to configure the lighting of the scene using a graphical utility. When the mouse is
over the visualization frame of the window press the l or L key to open the light configuration kit. This
will pop up a new window where you can configure as many as eight different lights. The default light
is to have one light placed as a headlight. A headlight is a light that points directly ahead in the same
direction as the camera. It is possible to change the position of the default light. It is also possible to turn
on other lights, configure their elevation and azimuthal positions using the sliders provided, configure
their intensity and color. To configure a particular light click on one of the conical glyphs that indicate a
particular light. The GUI is fairly easy to follow. Experiment with it to become comfortable with it.

Note that if you save a visualization your light settings are also saved and when you reload the
visualization these settings are restored.

3.7 The Menus

This section details the various menus that MayaVi provides. Almost all the menu items have hot keys
associated with them. The underlined letter indicates the key sequence to be used. Consider the case
of the New Window menu item (the letter N is underlined) that is in the File menu (the letter F is
underlined). This can be reached by using the following key strokes. Alt-F followed by N. The Menu
itself requires the Alt modifier but the menu item does not. The following are the various menus that
MayaVi provides.

3.7.1 File Menu

The File menu provides the following menu items.

New Window This creates a new MayaVi visualization window that is completely independent of the
first window. Any number of such windows can be created.

Open This provides a submenu containing two items.

VTK file This provides a GUI dialog from which a VTK file can be selected for opening. Once the
file is opened a new DataVizManager is created and a GUI dialog for configuring the data
file is provided.

VTK XML file This provides a GUI dialog from which a VTK XML file can be chosen. This is a
new VTK format and is only available in VTK versions higher than 4.0.

PLOT3D file This provides a sub menu from which either a PLOT3D file containing single block
or multi-block binary structured grid data can be selected for opening. Once the file is opened
a new DataVizManager is created and a GUI dialog for configuring the data file is provided.

EnSight case file This provides a sub menu from which an EnSight case file can be opened.

Import This provides a submenu containing two items.

VRML2 scene This loads a VRML2 scene into the current visualization.

3D Studio scene This provides a menu containing all the VRML files that are already opened.
The chosen VRML file is closed and the VRML files actors are removed from the rendered
scene.

Load This provides a submenu containing three items.

Visualization This loads a saved complete visualization.

ModuleManagers This creates new ModuleManager s for the current DataVizManager and
loads ModuleManager s that have been saved to a file into the newly created ones.

ModuleManagers (Append) This is slightly different from the previous menu item and loads the
first of the saved ModuleManager s into the current ModuleManager and for the subsequent
saved ModuleManager s it creates new ModuleManager s and loads ModuleManager s from
the saved file.

Save This provides a submenu containing four items.

13

CHAPTER 3. USING MAYAVI 3.7. THE MENUS

Entire Visualization This saves the entire visualization configuration to a file such that it can be
loaded by the Load menu’s Visualization menu item.

Current DataVizManager This creates saves the current DataVizManager to a file. This can be
loaded as a visualization.

Current ModuleManager This enables one to store the currently active ModuleManager into a
file such that it can be loaded later.

All ModuleManagers This enables one to store the all the ModuleManager s for the currently
active DataVizManager into a file such that it can be loaded later.

Save Scene to Provides a menu which in turn provides menu items to export the visualized scene to a
Post Script file, PPM/BMP/TIFF/JPEG/PNG image, Open Inventor, Geomview OOGL, VRML
and RenderMan RIB files. It is also possible to save the scene to a vector graphic via GL2PS
<http://www.geuz.org/gl2ps >. This is only available if VTK is built with GL2PS support.

Close Provides submenu’s to close the current DataVizManager . This means that all the ModuleManager s
of that particular DataVizManager will also be deleted. It also provides menus to close the cur-
rently active VRML and 3D Studio scenes that have been imported.

Close All Close all the DataVizManager s and all the imported VRML2 and 3D Studio scenes.

Exit Close this particular MayaVi Window. If this is the only MayaVi window the application exits
completely.

3.7.2 Visualize Menu

The Visualize menu provides the following menu items.

Modules Provides a sub-menu which contains a list of all available Module s. This list is dynamically
generated based on the available modules.

Filters Provides a sub-menu which contains a list of all available Filter s. This list is dynamically
generated based on the available filters.

Pipeline browser This creates a GUI that shows the entire VTK visualization pipeline. The objects
in the pipeline can be configured by double clicking on the items. If there are a large number
of objects this can become confusing to use and it would be better to use the pipeline segment
browser configuration provided with the configuration for each Module

3.7.3 Options Menu

The Options menu provides the following menu items.

Preferences Provides a GUI using which one can edit the default preferences. The preferences allow
one to set various default settings including foreground color, background color, default directory
where the file related dialogs will open in initially. These options can be saved so that the next time
MayaVi is started it will use these defaults. If you set the default directory to an empty one the
directory that the file open/save dialogs will use will be intelligently chosen. The stereo rendering
option enables stereo rendering in the MayaVi window. If the save current lighting option is set
then the current lighting is saved as the default and used in all subsequent MayaVi visualizations.

The search path setting allows the user to specify a list of directories where user defined sources,
modules and filters are made available. The search path is a ’:’-separated string and is specified
like the PYTHONPATH. ’˜’, ’˜user’ and ’$VAR’ are all expanded. Each of the directories specified
in this string can have a Sources/ , a Modules/ and a Filters/ directory inside where user de-
fined sources, modules and filters can be stored. These modules and filters will be made available
inside the User sub-menu of the File/Open , Module and Filter menus respectively. These sources,
modules and filters can be used from the command line or from a Python interpreter session by us-
ing ’User.SourceName’ (sources cannot be specified from the command line), ’User.ModuleName’
or ’User.FilterName’. When creating user defined sources or modules or filters make sure that the
name of the module is the same as the name of the class that defines the particular object.

14

http://www.geuz.org/gl2ps

CHAPTER 3. USING MAYAVI 3.8. MODULE DOCUMENTATION

Configure RenderWindow Provides a simple GUI to configure the Visualization RenderWindow. This
is also where one can change the stereo rendering options.

Change Foreground Allows one to change the default foreground color.

Change Background Allows one to change the default background color.

Show Debug window Pops up a small window where debug messages are printed. This is very useful
if you run into trouble and want to know what happened. It also shows the function call sequence.
The messages are also printed to stderr.

Show Control Panel Toggles the visibility of the control panel. This can be very useful when you want
to do a full screen visualization.

Reload Modules This function reloads all the currently loaded Python modules. This is very useful
while debugging a new feature for some module that one is creating. One may also see funny
behavior for already instantiated objects.

3.7.4 Help Menu

The Help menu provides the following menu items.

About Displays a few details about MayaVi.

Users Guide Opens a web browser and displays this MayaVi users guide.

Home page Opens a web browser and displays the MayaVi home page.

3.8 Module Documentation

The following are the list of provided Modules along with a brief description.

Axes This module creates and manages a set of three axes for your data. The class uses a vtkCubeAxe-
sActor2D.

BandedSurfaceMap Displays a surface map with special contouring using the vtkBandedPolyData-
ContourFilter. This contour filter produces filled contours of the same color between two contour
lines rather than either a continuous color distribution or just individual contour lines. It should
work for any input dataset. It is best used for 2d surfaces. Note that one can either specify a total
number of contours between the minimum and maximum values by entering a single integer or
specify the individual contours by specifying a Python list/tuple in the GUI.

ContourGridPlane This module shows a grid plane of the given input structured, rectilinear or struc-
tured points grid with the scalar data either as a color map or as contour lines. This works only for
structured grid, structured point and rectilinear grid data. Note that one can either specify a total
number of contours between the minimum and maximum values by entering a single integer or
specify the individual contours by specifying a Python list/tuple in the GUI.

CustomGridPlane This module shows a grid plane of the given input grid. The plane can be shown as
a wireframe or coloured surface with or without scalar visibility and contour lines. The module
basically wraps around the vtk*GeometryFilters. This module enables one to completely config-
ure the grid plane. It works only for structured grid, structured point and rectilinear grid datasets.
Note that one can either specify a total number of contours between the minimum and maxi-
mum values by entering a single integer or specify the individual contours by specifying a Python
list/tuple in the GUI.

Glyph This module displays glyphs scaled and colored as per the input data. This will work for any
dataset and can be used for both scalar and vector data.

GridPlane This module shows a grid plane of the given input grid. The plane can be shown as a
wireframe or coloured surface with or without scalar visibility. This works only for structured
grid, structured point and rectilinear grid data. Useful for debugging and displaying your created
grid.

15

CHAPTER 3. USING MAYAVI 3.8. MODULE DOCUMENTATION

HedgeHog This module shows the given vector data as a ’hedge hog’ plot. The lines can be colored
based on the input scalar data. This class should work with any dataset.

IsoSurface This module shows an iso-surface of scalar data. This will work for any dataset.

Labels Displays text labels of input data. When instantiated, the class can be given a module name
(the same name as listed in the Modules GUI) or an index of the module (starting from 0) in
the current module manager. If this is not provided the module will ask the user to choose a
particular module or choose filtered data. The module will then generate text lables for the data
in the chosen module and display it. The module provides many configuration options. It also
lets one turn on and off the use of a vtkSelectVisiblePoints filter. Using this filter will cause the
module to only display visible points. Note that if the module that is being labeled has changed
significantly or is deleted this Labels module will have to be updated by changing one of the
settings (like the RandomModeOn check button) to a different value and then back to the original
one. Alternatively, choose the module to be labeled again.

Locator This module creates a ’Locator’ axis, that can be used to mark a three dimensional point in your
data.

Outline Displays an Outline for any data input.

PolyData Displays any input polydata, nothing fancy.

ScalarCutPlane This module plots scalar data on a cut plane either as a color map or with contour lines.
This will work for any dataset. Note that one can either specify a total number of contours between
the minimum and maximum values by entering a single integer or specify the individual contours
by specifying a Python list/tuple in the GUI.

Streamlines This module makes it possible to view streamlines, streamtubes, and stream ribbons for
any type of vector data. Any number of point sources can be added and deleted. A fairly powerful
UI is provided. This module should work with any dataset.

StructuredGridOutline Displays an Outline for a structured grid.

SurfaceMap Displays a surface map of any data. It should work for any dataset but is best if used for
2d surfaces (polydata and unstructured surfaces). Note that one can either specify a total number
of contours between the minimum and maximum values by entering a single integer or specify
the individual contours by specifying a Python list/tuple in the GUI.

TensorGlyphs This module displays glyphs, scaled and colored as per the tensor data. This will work
for any dataset.

Text Displays simple text on the screen. The text properties and position are configurable. The text can
also be multi-line if newlines are embedded in it.

VectorCutPlane This module displays cone glyphs scaled and colored as per the vector or scalar data
on cut plane. This will work for any dataset.

VelocityVector This module displays cone or arrow glyphs scaled and colored as per the vector data.
This will work for any dataset.

Volume This Volume module allows one to view a structured points dataset with either unsigned char
or short data as a volume. The module also provides a powerful GUI to edit the Color Transfer
Function (CTF). You can drag the mouse with different buttons to change the colors. The following
are the mouse buttons and key combinations that can be used to edit the CTF – red curve: Button-1,
green curve: Button-2/Control-Button-1, blue curve: Button-3/Control-Button-2, alpha/opacity:
Shift-Button-1. It is possible to use either the vtkVolumeRayCastMapper or the vtkVolumeTex-
tureMapper2D. It is also possible to choose among various ray cast functions.

WarpVectorCutPlane This module takes a cut plane and warps it using a vtkWarpVector as per the
vector times a scale factor. This will work for any dataset.

16

CHAPTER 3. USING MAYAVI 3.9. FILTER DOCUMENTATION

3.9 Filter Documentation

The following are the list of provided Filters along with a brief description.

CellToPointData This class produces PointData given an input that contains CellData. This is useful
because many of VTK’s algorithms work best with PointData. The filter basically wraps the vtk-
CellDataToPointData class.

CutPlane This filter takes a cut plane of any given input data set. It interpolates the attributes onto a
plane. The position and orientation of the plane are configurable using a GUI.

Delaunay2D This filter wraps around the vtkDelaunay2D filter and lets you do 2D triangulation of a
collection of points. The key parameters are Tolerance and the Alpha value. Tolerance gives the
criteria for joining neighbouring data points and alpha is the threshold for the circumference of a
caluculated triangulated polygon.

Delaunay3D This filter wraps around the vtkDelaunay3D filter and lets you do 3D triangulation of a
collection of points. The key parameters are Tolerance and the Alpha value. Tolerance gives the
criteria for joining neighbouring data points and alpha is the threshold for the circumference of a
caluculated triangulated polygon.

ExtractGrid Wraps vtkExtractGrid (structured grid), vtkExtractVOI (imagedata/structured points) and
vtkExtractRectilinearGrid (rectilinear grids). These filters enable one to select a portion of, or sub-
sample an input dataset. Depending on the input data the appropriate filter is used.

ExtractTensorComponents This wraps the vtkExtractTensorComponents filter and allows one to select
any of the nine components or the effective stress or the determinant from an input tensor data
set. This will work for any dataset.

ExtractUnstructuredGrid This wraps the vtkExtractUnstructuredGrid filter. From the VTK docs: vtkEx-
tractUnstructuredGrid is a general-purpose filter to extract geometry (and associated data) from
an unstructured grid dataset. The extraction process is controlled by specifying a range of point
ids, cell ids, or a bounding box (referred to as ’Extent’). Those cells lying within these regions are
sent to the output. The user has the choice of merging coincident points (Merging is on) or using
the original point set (Merging is off).

ExtractVectorComponents This wraps the vtkExtractVectorComponents filter and allows one to select
any of the three components of an input vector data attribute.

ExtractVectorNorm This wraps the vtkVectorNorm filter and produces an output scalar data with the
magnitude of the vector.

MaskPoints This wraps the vtkMaskPoints filter. The problem with this filter is that its output is Polyg-
onal data. This means that if you add this filter to a ModuleManager with visualizations apart from
HedgeHog or other velocity vector data you won’t see anything! If that happens create another
ModuleManager and show the other visualizations there. Also, this means that this filter should
be typically inserted at the end of the list of filters.

PolyDataNormals This wraps the vtkPolyDataNormals filter. vtkPolyDataNormals is a filter that com-
putes point normals for a polygonal mesh. This filter tries its best to massage the input data to a
suitable form. Its output is a vtkPolyData object. Computing the normals is very useful when one
wants a smoother looking surface.

StructuredPointsProbe A useful filter that can be used to probe any dataset using a Structured Points
dataset. The filter also allows one to convert the scalar data to an unsigned short array so that the
scalars can be used for volume visualization.

Threshold This wraps the vtkThreshold filter. The problem with this filter is that its output is an Un-
structured Grid. This means that if you add this filter to a ModuleManager of a gridded dataset
and you have a few grid planes, then your grid planes won’t show anymore. If that happens create
another ModuleManager and show the grid planes there acting on unfiltered data.

UserDefined This filter wraps around a user specified filter and lets one experiment with VTK filters
that are not yet part of MayaVi. By default if the class is instantiated it will ask the user for the
VTK class to wrap around. If passed a valid VTK class name it will try to use that particular class.

17

CHAPTER 3. USING MAYAVI 3.9. FILTER DOCUMENTATION

Vorticity This filter computes the vorticity of an input vector field. For convenience, the filter allows
one to optionally pass-through the given input vector field. The filter also allows the user to show
the component of the vorticity along a particular cartesian co-ordinate axes.

WarpScalar This wraps the vtkWarpScalar filter. vtkWarpScalar is a filter that modifies point coordi-
nates by moving points along point normals by the scalar amount times the scale factor. Useful
for creating carpet or x-y-z plots.

WarpVector Warps the geometry using the vtkWarpVector filter. vtkWarpVector is a filter that modifies
point coordinates by moving points along vector times the scale factor. Useful for showing flow
profiles or mechanical deformation.

18

Chapter 4

Using MayaVi from Python

If you have installed MayaVi from the sources and are not using a binary release, then you can use
MayaVi as a Python module. This chapter details how you can use MayaVi as a Python module. If
you are looking for a powerful, interactive, cross-platform Python interpreter you might be interested
in IPython. <http://ipython.scipy.org >

4.1 An example

Its very easy using MayaVi as a Python module. Thanks to Tkinter, it is also possible to use MayaVi
from the Python interpreter. This means that one can script MayaVi! This is a pretty powerful and
useful feature. To illustrate using MayaVi as a module and its scriptability, we will consider a few
simple examples where the user generates some data and a VTK file and then uses MayaVi to visualize
the data.

4.1.1 Generating some data

>>> # generate the data.
>>> from Numeric import *
>>> import scipy
>>> x = (arange(50.0)-25)/2.0
>>> y = (arange(50.0)-25)/2.0
>>> r = sqrt(x[:,NewAxis]**2+y**2)
>>> z = 5.0*scipy.special.j0(r) # Bessel function of order 0
>>> # now dump the data to a VTK file.
>>> import pyvtk
>>> # Flatten the 2D array data as per VTK’s requirements.
>>> z1 = reshape(transpose(z), (-1,))
>>> point_data = pyvtk.PointData(pyvtk.Scalars(z1))
>>> grid = pyvtk.StructuredPoints((50,50, 1), (-12.5, -12.5, 0), (0.5, 0.5, 1))
>>> data = pyvtk.VtkData(grid, point_data)
>>> data.tofile(’/tmp/test.vtk’)

The above example uses the Numeric <http://numpy.sourceforge.net >, SciPy <http://
www.scipy.org > and pyVtk <http://cens.ioc.ee/projects/pyvtk/ > modules. Please note
the step where z1 is obtained from z . This step is done to correctly flatten the two dimensional array z .
The problem with Numeric arrays and VTK data is that you have to be careful of the order of the data
points. The way VTK reads data (for all the data formats that have a structure) is something like this:

>>> for k in range(n_z):
>>> for j in range(n_y):
>>> for i in range(n_x):

19

http://ipython.scipy.org
http://numpy.sourceforge.net
http://www.scipy.org
http://www.scipy.org
http://cens.ioc.ee/projects/pyvtk/

CHAPTER 4. USING MAYAVI FROM PYTHON 4.1. AN EXAMPLE

>>> read_line()

This means that the x values must be iterated over first, the y values next and the z values last. If you
simply flatten the 2D numeric array then this will not happen properly. By using reshape(transpose(z),
(-1,)) we ensure that the data points are specified in the correct order. The next step is to visualize
the generated data.

4.1.2 Visualize the generated data

>>> import mayavi
>>> v = mayavi.mayavi() # create a MayaVi window.
>>> d = v.open_vtk(’/tmp/test.vtk’, config=0) # open the data file.
>>> # The config option turns on/off showing a GUI control for the data/filter/module.
>>> # load the filters.
>>> f = v.load_filter(’WarpScalar’, config=0)
>>> n = v.load_filter(’PolyDataNormals’, 0)
>>> n.fil.SetFeatureAngle (45) # configure the normals.
>>> # Load the necessary modules.
>>> m = v.load_module(’SurfaceMap’, 0)
>>> a = v.load_module(’Axes’, 0)
>>> a.axes.SetCornerOffset(0.0) # configure the axes module.
>>> o = v.load_module(’Outline’, 0)
>>> v.Render() # Re-render the scene.

The result of this is seen in the above figure. It is important to note that the Python interpreter will
continue to remain interactive when MayaVi is running. In fact, it is possible to create an animation
from the interpreter as done in the following.

>>> # now do some animation.
>>> import time
>>> for i in range (0, 10):
... f.fil.SetScaleFactor(i*0.1)
... v.Render()

20

CHAPTER 4. USING MAYAVI FROM PYTHON 4.1. AN EXAMPLE

... v.renwin.save_png(’/tmp/anim%d.png’%i) # save the image to a PNG file

... time.sleep(1)
>>>

The above example saves the screen each iteration to a PNG image. One will need VTK 4.0 for PNG
support. These images can be later used by some other utility to create a movie. It is therefore possible
to create very useful visualizations from within the Python interpreter.

4.1.3 Using VTK data objects

There are times when the user has created a VTK data object that needs to be visualized. MayaVi has a
special data handler for such cases. The following shows how this can be used. The example itself uses
a VTK file but the data could have also been generated using other means.

>>> # import VTK
>>> import vtk
>>> # create some data.
>>> reader = vtk.vtkStructuredPointsReader()
>>> reader.SetFileName(’/tmp/test.vtk’)
>>> reader.Update()
>>> data = reader.GetOutput() # this is a vtkStructuredPoints object.
>>> import mayavi
>>> v = mayavi.mayavi() # create a MayaVi window
>>> v.open_vtk_data(data) # load the data from the vtkStructuredPoints object.
>>> f = v.load_filter(’WarpScalar’, 0)
>>> # Load other filters and modules...

The above example uses a vtkStructuredPoints as the input. Other types can also be used as the
input. The other valid types are: vtkRectilinearGrid , vtkStructuredGrid , vtkUnstructuredGrid
and vtkPolyData . Any of these objects can be used as an input and then visualized using MayaVi.

Right now the best way to find out what functions are available etc. would be to read the sources or
use pydoc to browse through the code. Experimenting with MayaVi from the interpreter is also a good
idea and will be highly educative.

4.1.4 Standalone MayaVi scripts

After interactively exploring MayaVi from the interpreter one usually would like to run these in a non-
interactive fashion. That is you’d like to create a Python script that invokes MayaVi. The easiest way to
do it is as shown in the following simple example

import mayavi
v = mayavi.mayavi()
v.load_visualization(’heart.mv’)
Do whatever you please with the MayaVi window.

To make the MayaVi window interact with the user and wait
till it is closed to proceed, do the following:
v.master.wait_window()

Now once the previous window is closed if you need
to open another do this:
v = mayavi.mayavi()
d = v.open_vtk(’file.vtk’)
etc.
v.master.wait_window()

21

CHAPTER 4. USING MAYAVI FROM PYTHON 4.2. USEFUL PYTHON MODULES

Once the MayaVi window is closed the program will exit.

As can be seen above, it is easy to use code from an interactive session in a standalone Python script.
It is also possible to script MayaVi in the following manner.

import Tkinter
r = Tkinter.Tk()
r.withdraw()
import mayavi
v = mayavi.Main.MayaViTkGUI(r)
v.load_visualization(’heart.mv’)
Do whatever you please with the MayaVi window.

now do this to start the Tk event loop.
root.mainloop()
Once the MayaVi window is closed the program will exit.

This is an alternative way to do use MayaVi from Python scripts. This might be helpful if you have
used Tkinter and know how to use it. However, the first approach is a lot easier.

4.2 Useful Python Modules

This section describes some other useful modules that are released as part of MayaVi but are not neces-
sarily part of the core MayaVi module/application. The module ivtk is described in the next section.
The MayaVi package also contains a sub-package called tools . This directory contains miscellaneous
but useful tools that use or are related to MayaVi. This is described subsequently.

4.2.1 The Interactive VTK module

It is very nice to be able to use and experiment with VTK from the Python interpreter. In order to make
this easier I’ve written a simple module that uses some of the MayaVi classes. This makes using VTK
from Python very pleasant. The module is called ivtk which stands for interactive VTK. ivtk provides
the following features.

• An easy to use VTK actor viewer that has menus to save the scene, change background, show a
help browser, show a pipeline browser etc.

• A simple class documentation search tool/browser that lets you search for arbitrary strings in the
VTK class documentation and lets you browse the VTK class documentation.

• An easy to use GUI to configure VTK objects using the vtkPipeline.ConfigVtkObj module.

• An integrated picker that can be activated by pressing the p or P keys. This picker functions the
same way as the MayaVi picker.

• An integrated light configuration kit that can be activated by pressing the l or L keys. This light
configuration functions the same way as the MayaVi light kit.

The help browser allows one to search for arbitrary strings in the VTK class documentation. ’and’ and
’or’ keywords are supported and this makes searching for specific things easier. If a search is successful
a list of matching classes is returned. Clicking on a class will pop up a window with the particular
class documentation. It is also possible to search for a particular class name. All classes matching the
searched name will be shown. The searching is case insensitive.

Here is a sample session that illustrates how ivtk can be used. A simple cone example is shown.

22

CHAPTER 4. USING MAYAVI FROM PYTHON 4.2. USEFUL PYTHON MODULES

>>> from mayavi import ivtk
>>> from vtk import *
>>> c = vtkConeSource()
>>> m = vtkPolyDataMapper()
>>> m.SetInput(c.GetOutput())
>>> a = vtkActor()
>>> a.SetMapper(m)
>>> v = ivtk.create_viewer() # or ivtk.viewer()
this creates the easy to use render window that can be used from
the interpreter. It has several useful menus.

>>> v.AddActors(a) # add actor(s) to viewer
>>> v.config(c) # pops up a GUI configuration for object.
>>> v.doc(c) # pops up class documentation for object.
>>> v.help_browser() # pops up a help browser where you can search!
>>> v.RemoveActors(a) # remove actor(s) from viewer.

The AddActors/RemoveActors method can be passed a list/tuple or a single actor. All of the
passed actors will be added/removed to the vtkRenderWindow . The config method provides an easy
to use GUI to configure the passed VTK object. The viewer also provides menus to save the rendered
scene and also provides a menu to open a VTK Pipeline browser that can be used to browse the VTK
pipeline and configure objects in it.

Even without creating the actor viewer it is possible to use the help browser and the configure code
as shown below.

>>> from mayavi import ivtk
>>> d = ivtk.doc_browser()
pops up a standalone searcheable VTK class help browser.
>>> from vtk import *
>>> c = vtkConeSource()
>>> ivtk.doc(c) # pops up class documentation for c
>>> ivtk.doc(’vtkObject’) # class documentation for vtkObject.
>>> ivtk.config(c) # configure object with GUI.

The module is fairly well documented and one should look at the module for more information.
However, the above information should suffice if one wants to start using the module.

4.2.2 The MayaVi tools sub-package

MayaVi has a tools sub-package that contains useful modules that use or are related to MayaVi. The
following modules are present currently.

4.2.2.1 The imv package

The imv module provides Matlab-like one liners that make it easy to visualize data from the Python
interpreter. It currently provides three useful functions. These are partially described below. A simple
example is also provided below that. The imv module is well documented so please read the documen-
tation strings in the module for more details.

surf(x, y, f) This samples the function or 2D array f along x and y and plots a 3D surface.

view(arr) Views 2D arrays as a structured points dataset. The view is set to the way we usually think
of matrices with (0,0) at the top left of the screen.

23

CHAPTER 4. USING MAYAVI FROM PYTHON 4.2. USEFUL PYTHON MODULES

viewi(arr) Views 2D arrays as a structured points dataset. The data is viewed as an image. This
function is meant to be used with large arrays. For smaller arrays one should use the more power-
ful view() function. The implementation of this function is a bit of a hack and many of MayaVi’s
features cannot be used. For instance you cannot change the lookup table color and expect the
color of the image to change.

sampler(xa, ya, func) Samples a function (func) at an array of ordered points (with equal spac-
ing) and returns an array of scalars as per VTK’s requirements for a structured points data set, i.e.
x varying fastest and y varying next.

Here is a simple example of what can be done with the imv module.

>>> from Numeric import *
>>> from mayavi.tools import imv

>>> # surf example.
>>> def f(x, y):
... return sin(x*y)/(x*y)
>>> x = arange(-5., 5.05, 0.05)
>>> y = arange(-5., 5.05, 0.05)
>>> v = imv.surf(x, y, f)

>>> # view/viewi example.
>>> z1 = fromfunction(lambda i,j:i+j, (128,256))
>>> v1 = imv.view(z1)

>>> z2 = fromfunction(lambda i,j:i+j, (512, 512))
>>> v2 = imv.viewi(z2)

24

Chapter 5

Information for Developers

This chapter covers a few points that developers should note while creating their own filters and mod-
ules. The word component in the following discussion refers to either a Source or Module or a Filter
or any other class relevant to MayaVi.

5.1 Source Organization

The MayaVi sources are organized in the following fashion.

Base/ The Base/ directory contains classes that define the basic objects that populate MayaVi (in Objects.
py). It also contains files that define the ModuleManager and the DataVizManager .

Common.py This contains useful functions and classes that are commonly used. It also contains some
variables that are used by all the other source.

Filters/ This directory contains files that define the various filters.

Modules/ This directory contains files that define the various modules.

Main.py This defines the main GUI class for MayaVi.

doc/ This directory contains documentation for MayaVi.

examples/ This directory contains a few simple examples for VTK. Currently a simple VTK data file, a
visualization based on this data file and a customized lookup table are included.

tools/ This directory is actually a sub-package of MayaVi. It contains useful modules that use MayaVi
or are useful along with MayaVi. The packages in the tools are described in the tools section.

vtkPipeline/ This directory contains files for the vtkPipeline browser and associated tools. These in-
clude a Tkinter based pipeline browser for VTK, a segmented pipeline browser, a simple pickler
for VTK objects and a Tkinter based VTK object GUI configurator. The pipeline browser can be
used independently of MayaVi.

5.2 Extending MayaVi

5.2.1 User defined sources, modules and filters

The easiest way to extend MayaVi is to create a directory that contains three sub-directories called
Sources/ , Modules/ and a Filters/ directory inside where user defined sources, modules and fil-
ters can be stored. You don’t need to create an init .py file in these directories. This directory should
then be added to the MayaVi ”search path” which may be set by using the Options/Preferences menu.
The search path is a ’:’-separated string and is specified like the PYTHONPATH. ’˜’, ’˜user’ and ’$VAR’
are all expanded. Note that after changing the search path you’ll have to restart MayaVi.

These user defined modules and filters will be made available inside the User sub-menu of the
File/Open , Module and Filter menus respectively. These sources, modules and filters can be used from
the command line or from a Python interpreter session by using ’User.SourceName’ (sources cannot

25

CHAPTER 5. INFORMATION FOR . . . 5.2. EXTENDING MAYAVI

be specified from the command line but may be specified in a Python script), ’User.ModuleName’ or
’User.FilterName’. When creating user defined sources or modules or filters make sure that the name of
the module is the same as the name of the class that defines the particular object.

It is likely that the first thing you will do to test out this functionality is to copy a standard source,
module or filter into your directory, rename it and test with it. Beware of some of the following points
before you do that.

1. Make certain that the name of the class that defines the source/module/filter is identical with the
name of the module that contains it. So if you have a module called MySuperModule.py the
class that defines the module must be called MySuperModule . The same applies to the sources
and filters as well.

2. The standard Modules/filters and sources are a little special and will typically contain code that
looks like this.

import Base.Objects, Common
...
class SomeModule(Base.Objects.Module):
...

This must be changed to the following.

from mayavi import Common
from mayavi.Base import Objects
...
class SomeModule(Objects.Module):
...

Essentially, the Python module defining your object should be ”import-able” from the Python
interpreter even without MayaVi running.

5.2.2 General guidelines and information

This section lists a set of things that developers should know before extending MayaVi by implementing
new Module s, Source s and Filter s.

1. The print err function takes a string and prints it out on a GUI message box.

2. The get relative file name(base f name, f name) function returns a file name for the
given f name relative to the base f name. This is useful when one stores file names in the con-
figuration.

3. The get abs file name(base f name, rel f name) function returns an absolute file name
given a base file name and another file name relative to the base name. This is useful to load a
stored file name.

4. The debug function prints a string on the debug window and on sys.stdout . This is used to
print debug messages in all the MayaVi code.

5. The config variable is an instance of class that contains the configuration preferences of the user.
This is used to initialize default colors etc.

6. The state variable is instance of the AppState class. The state.busy() state.idle() mem-
bers are used to change the state of the MayaVi application.

1. As with any code the best way to learn how the classes and functions are organized and work is
to look through the source. What follows are a few hints that might be useful when you develop
code for MayaVi.

26

CHAPTER 5. INFORMATION FOR . . . 5.2. EXTENDING MAYAVI

2. Before writing a new component please look at the the Module , Filter and Source classes
defined in Base/Objects.py . Also look at their parent classes. A lot of useful functionality is
provided there and reading this may prevent unnecessary code replication.

3. The Module and Filter menus are created dynamically from the files in the Modules and Filters
directories. All the files there except the init .py will be recognized as modules or filters
respectively. So do not put any files there that are neither modules nor filters.

4. Make sure the name of the new Module/Filter or Source subclass and the name of the file that
defines the Module subclass are the same. For instance the Axes module is defined in a file called
Axes.py .

5. As far as possible try to follow my style of coding. The naming convention that I have fol-
lowed is to name all VTK like methods in the usual VTK way (like GetOutput). All other meth-
ods are named like so get vtk object. This has been done to differentiate between the two. All
class names have the first letter of each word capitalized for example as in VtkDataReader and
ExtractVectorComponents .

6. Please try to document your classes and functions.

7. While writing any component please try to make the particular component ”import safe” by not
doing either of the first two and using the last way of importing modules. Doing this makes it
possible to reload modules on the fly.

Don’t do this:
from SomeThing import *
or the following:
from SomeThing import SomeClass
Use this instead.
import SomeThing

8. While developing a component it is possible to test the component by running MayaVi and then
retest it by reloading the modules from the Options .

9. The Common.py module provides a few useful classes and functions. Some of them are as follows:

10. Every component has to be able to save its state to an ASCII file and be able to reload its state
from the saved file. The save config and load config functions should implement this. This
should be tested properly.

Happy hacking!

27

	1 Introduction
	2 Getting started
	2.1 Starting MayaVi
	2.2 Command line arguments
	2.2.1 Basic options
	2.2.2 Advanced options
	2.2.3 Examples

	2.3 The MayaVi Window

	3 Using MayaVi
	3.1 The Basic Design of MayaVi
	3.1.1 The Control Panel

	3.2 Data formats
	3.3 Opening a data file
	3.4 Visualizing the Data
	3.4.1 Navigating the Visualization
	3.4.1.1 Navigating using the mouse

	3.5 Picking data
	3.6 Configuring the lights
	3.7 The Menus
	3.7.1 File Menu
	3.7.2 Visualize Menu
	3.7.3 Options Menu
	3.7.4 Help Menu

	3.8 Module Documentation
	3.9 Filter Documentation

	4 Using MayaVi from Python
	4.1 An example
	4.1.1 Generating some data
	4.1.2 Visualize the generated data
	4.1.3 Using VTK data objects
	4.1.4 Standalone MayaVi scripts

	4.2 Useful Python Modules
	4.2.1 The Interactive VTK module
	4.2.2 The MayaVi tools sub-package
	4.2.2.1 The imv package

	5 Information for Developers
	5.1 Source Organization
	5.2 Extending MayaVi
	5.2.1 User defined sources, modules and filters
	5.2.2 General guidelines and information

